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Strong k-connectivity in digraphs and random digraphs.

1 SUMMARY

This paper concerns an extension of the strong connectivity notion
in directed graphs. A digraph D is k-strongly connected if, for each
X,y vertices of D, there exist > k vertex disjoint paths from x to y and
also > k vertex disjoint paths from y to x. A k-strong block of a digraph
D is a maximal k-strongly connected subgraph of D. We show here how many
results about the k-blocks in undirected graphs extend to k-strong blocks in
digraphs. (Separation lemma, overlapping of k-strong blocks, number of them,
sec [MATULA, 78].) We prove, for example, that the maximum number of
k-strong blocks for all k > 1 in any n-vertex graph is L(Zn-l)/3j. We
also prove that two k-strong blocks cannot have more than k-1 vertices in
commen. We furthermore present results bounding the cardinality of the big-
gest k-strong block in random digraphs of the Dn model. We show here that

%

the cardinality of the biggest k-strong block is > n - log n with probability

- 1.
>1l-n (cltk)z k) for p z_cﬁfk) and Cl(k) > 2k + 4. We also show that if
logn 3 . .
p > c(k) = with c(k) > 16k then the digraph Dn p is k-strongly con-
nected with very high probability (> 1 --—E%Tis with d'(k) > 1). This work
n

generalizes previous work of [REIF, SPIRAKIS, 81] on random undirected

graphs.

2 INTRODUCTION
A digraph D = (V,E) consists of a finite nonempty set V of vertices
together with a prescribed subset E of V x V - {{u,u):ueV} (set of directed

edges). (We allow no loops neither multiple edges.) A digraph D is
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k-strongly comnected if, for each x,y vertices of D, there exist > k vertex
disjoint paths from x to y and also > k vertex disjoint paths from y to x.
D has strong comnectivity K(D) = k if D is k-strongly connected but not

K + 1 - strongly connected. A k-strong block of a digraph D is a maximal

k-strongly connected subgraph of D. A k-strong block is trivial if it

has only one vertex. We extend here the definitions of [MaTULA, 78]

for k-connectivity and k-blocks in digraphs in a natural way. k-strong con-

nectivity seems to be an interesting property of a graph, in addition to

being a natural extension ¢f a mathematical structure. 1In [KLEINROCK, 72]

it is related to message flow in computer networks. The so-called associa-

tion graphs used in sociology and data cluster analysis may use the theory

of strong k-connectivity ([MaTura, 77], [JaRDINE, SIBSON, 71]). We give

here alternative characterization theorems of the k-strong blocks. We

prove various structural properties of k-strong blocks, namely limited

overlap, the k-strong block separation lemma (providing also an o(n")

algorithm for finding all k-strong blocks in an n-vertex digraph) and we pro-
vide an achievable upper bound on the number of k-strong blocks for all

k > 1 in any n-vertex graph. (This bound is equal tu l(2n-1)/3].) a1l

these results are ceneralizations and extensi~us of the corresponding results

of [MATULA, 78} on k~-blocks in undirected graphs.

of random

We also examinz k-strong connectivity in the model Dn p
’

For 0 < p<landn >0 let:Dn

digraphs, defined precisely as follows: p
14

be a random variable whose values are digraphs on the vertex set {1,2,...,n}.
If e = (u,v) and u,v are vertices, then Prob{e is an edge} = p and these

probabilities are independent for different ordered pairs e. Ex:ending the

atma

bl A i Ut Lo s

o e o bt e b bl

3

Sur . Do e L

il il




previous undirected graph results of [ERDOS, RENYI, 60] and [KARP, TARJAN, E
80] for k= 1,2 and [REIF, SPIRAKIS, 81] for general k in undirected i

graphs, we prove that for each constant k >0 and any € (0 ¢ ¢ < 1) and

i el el

a > 1 there is a c(k,a,e ) > 0 such that the random digraph I)n p with
[

p Z_E»has a k~-strong block of cardinality > e+n with probability at least

-an
l-e . We also show that for any g(n) = o(n) there are constants

c(k) > dk and d(k) > 2 such that the size of the biggest k-strong block is

d (k)

> n - g(n) with probability > 1 - (log n)/n for p > c(k) (log n)/n

An immediate corollary of that is that Dn p is almost surely k-strongly

’

et el & bl 2 ot b e et s . ettt

connected for such high values of p. Finally, we prove that for any

g(n) = o(n) there is a constant cl(k) = max(3, ¢ (k)) and a function
t(n) > (%(k) (log n))/g(n) such that if p > t(n)/n then the size of the ‘

biggest k-strong block is > n - g(n) with probability > 1 = -
- - et (n)g(n)
with p 3_(c1(k))/n
-c_(k)+1
1 .

+ 1l as n + ». BAn immediate corollary of that is that Dn p

’

has an n-log n size k-strong block with probability > 1 - n

Similar results were proved for undirected graphs in [REIF, SPIRAKIS, 81].

3 PROPERTIES OF k-STRONG BLOCKS

Proposition 1 If D is a digraph and G is the undirected version of L, then

k(D) < k(G) < 2-k(D), where k(G) is the connectivity of G.

Proof By Menger's theorem an undirected graph is k~connected if every pair

FRNDICN- RSN T

of points is joined by at leaist k vertex-disjoint paths,

Proposition 2 Each k-strong block has at least k vertices or it is trivial.
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Proof Easy by proposition 1 and the corresponding property of undirected

k-blocks (see [MaTura, 78)).

Lemma 1 The minimum number of vertices separating vertex s from vertex t
in the direction s to t, is the maximum number of vertex disjoint s to t

paths.

For the proof, see the Appendix. 1t is a modification of Dirac's proof to

Manger's theorem.

Theorem 1 The digraph D is k-strongly connected if for every vertex x
and for every vertex y, there are vertex cuts from x to y and from y to x of

size at least k.
Proof By Lemma 1 and the definition of k-strong connectivity.

Theorem 2 Let D be a k-strongly connected digraph and let x be a single
vertex graph with no edges. Let vl, crer YV be k distinct vertices of D.
Construct the digraph D' which has vertex set consisting of vertices

(D) u {x]} and edge set the union of the edge set of D and {(v_,x), (x,v )
i i

i=1, ..., k}. Then D' is k-strongly connected.
Proof Immediate by Theorem 1 (see figure 1)).

Theorem 3 Two k-strong blocks Bl' B2 cannot have more than k-1 vertices

in common.

Proof Assume, by contradiction, that they have > k vertices in common,

Vys seer Vo b2k (see figure 2).




Iet x be any vertex of 81 and y be any vertex of Bz, while neither x nor y

is a common vertex v,, 1 < i < h. Then we claim that we cannot find a

vertex cut from x to y or from y to x of size < k.

Proof of claim: If we could, let S be the sot of vertices in the cut,

|s|] <x. et s, s, s_be the intersections of S with V() - {u, ...,u},
1 2 ¢ 1 1

V(Bz) - {ux, e uh} and {ul..., uh} respectively. Clearly Isll <k,

|82| < k, [Sc[ < k. By taking the set S, out, at least one of the u, (call

it W) remains in the digraph. x had > k disjoint paths to u and hence the re-

moval of S1 P! sc leaves at least one path from x to u. Similarly, the re-

moval of scv S leaves out at least one path from u to y. Similarly for

the direction y x. Hence the set § is not a cut set, which contradicts to

our assumption.

By using the just proved claim we remar¥ that BllJBz should be k-strongly

connected if h # k. But this contradicts to the maximality of each of them. QED.

Definition Let D be a digraph (V,E) and let S € V be a vertex set. With

<S> we denote the directed subgraph induced by S on D.

4 STRUCTURE AND ENUMERATION OF k-STRONG BLOCKS
Definition A gseparating set S of the digraph D is a vertex set S © V(D)

such that D - S is not (one)-strongly connected.

The strongly connected components of D - S are denoted by <A1>, cens <Am>

where m > 2.

Proposition 3 A minimum separating set has IS] = k(D).

WP < . TN i e A e | -
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Proof By theorem 1, at least k(D) vertices are needed to be removed to

disconnect two points x, 1* in at leagt one of the directions xy, yx.

-

lLemma 2 (Block separation lemma) Let 8§ € V(G) ke a minimum separating set of
the digraph D (with <Af ¢ eeen <Am>, m > 2the strongly connected components

of D - <) and let k > k(D) + 1. Then each x-strong block of D is a k-strong
block of <A U s> for precisely one walue of i and each k~strong block of

<A, U S>, v, is a k-strong block of D.

i

Proof It iz immediate for D not strongly connected. Let D be a strongly
connected digraph with some minimum separating set S and let k > k(D) + 1.
Let B be a k-strong block of D. Since V(B) 1l § is not a separating set of
B and since lV(B)l > ISI, k must be a k-strong subgraph of precisely one
strongly connected component, <AilJS>, of D - S, B then is a subgraph of
precisely one k-s3trong block, B*, of <Ai U s>, and B* is then a k-strong
subgraph of D containing B. But B is maximal with respect to k-strong
connectivity in D, Hence B = B*, so B is a k-strong block of <Ai U s>,
For any i, let B* be a k~strong block of <Ai U s> with k > k(D) + 1.
B* then is a subgravh of some k-strong block B of D. Since B cannot be
separated by V(B) Nl S we conclude that V(B) 55‘1(<Ai Us>). Thus B is a
k-strong subgraph of <Ai U S> containing B" as a subgraph. By maximality

of B® we get B = BY, proving the lemma. QED

Definition For n > 1 let w(D,n) be the number of k-strong blocks of D

for k > n. Define w(D) = w(D,1).

bvaal i Rl sy e e
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It is obvious that, for a strongly connected D

m
w(D) = w(D,k(D)) = 1 + Z W(<A>UsS, k(D) + 1)
=l

(decomposition formula)
Lemma 3
w(D,n) < L(2(V(D)-n) + 1)/3] for 1 < n < V(D) - 1

for n > v(D)

]
(@)

Proof The verificaticn of the above formula is obvious for complete D

and for D with |V(D)| < 3.

By induction, let it hold for all digraphs D with 1 S_IV(D)I <j-1
and let D, be a particular noncomplete j-vertex digraph.

Let S be a minimum sepératinq set of Dj with <A1>, veer A, m > 2,
the strongly connected components of Dj - 8.

Consider three cases depending on n and w (<Ai U s>, n).

(i) Suppose n > k (Dj) + 1 and that there is one i € {1, ..., m} such
that

w (-:Ai Us>, n) =0
For k > n (from the block separation lemma) the k-strong blocks of Dj are

precisely the k-sctrong blocks of Dj - <Ai>°

Thus

w (Dj,n) = w(Dj - <Ai>, n)

Rt b st s st U o i

el dad

o "‘Mhl,n p
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and since lv(Dj —<Ai»| < 3 -~ 1, the inequality follows by the induction

hypothesis.

(ii) For n > k(D) + 1 for every digraph D, we have from the separation lemma

m
w (D,n) = E w (<a, U s>,n)
i=
Let n_>_lsl+l=k(Dj)+l
Let also w(<Ai Us>, n}) >1 Vi =1, ..., m
Thiis, IV(<AiUS>)[ln+1 V.=l ..om
So
m ' m
WD ,n) = Z wi<a, U s>,n) < 21 f_(z[v(AiUs)[-2n+1)/3J
i-‘—’l i=

(by the induction hypothesis)
m

< Z L(z(v(Ai)l + 2|s| - 2n+ 1)/3]
i=1

< 123 + 2(m-1) 8] - 2mn + m)/3}

< 123 - 2n+1)/3], o®D
(Note that 2(m-1)|S| - 2mn + m < 2 = m - 2n < ~2n, since m > 2.)

(iii) Let n = |s| = k(D) > 1
Then |<Ai U G>\ >n+ 1 Vi =1, va., M

So, by the decompcsition formula of page 7 and by the induction hypothesis




m
wDm =1+ Y v a>Us, n+l)
i=1
m
< 1+ (2lagl +2[s| - 2n - 1)/3) )
i=1

< 1+ |(2j - 2n - my/3)

< 23 < 2n + 1)/3) QED .

| ]

Corollary i

w(D) < max w(D,1) = | (2n - 1)/3] f

V)| = n 1

1 ;

; We now show that this upper bound is achievable. }

é} Lemma 4 There exists a digraph D such that :

| ;
w () = L(2n - 1)/3]

Proof Consider the following digraph Dw' 3

v (D ).;- a e a LEEJ ' b P eee b Fﬂj C e e (o] [_11/3]? :

W o 3 1 ' 3] Gy J a

5

Let E (D) be the union of the following sets: .

| 1 Do s

éai, aj)_U (aj, ai% l<ic<3 5_[(n+2)/3], i

i

%ai, bj),(bj, ai% 1<i<j< Ln+ed)/3], i

4 . %

'(ai, ¢5) s (cj.ai)z l<ic<js< Lns3), ;

%‘bi' ci), (ci' bi)z 12i< In/3] ]

. 3
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For any 1 < k < [(n-1)/3] , the subgraph

D, - {bx' ceer by g4 cl, cees ck-l} is a k~strong block of

D and there are no other k-strong blocks for that value of k, except

trivial k-strong blocks.

We have also to count the k-strong blocks with no (k + l)-strong

blocks inside. For n =0,1 (mod 3) the complete subgraphs

1 i}.g.[n/3j are the only kind of these

-

X
k-blocks. For n = 2 (mod 3) we have also to add the clique

b }

,i}f al, a2, e am_z-|
[‘3J |3
So, the maximum number of the %k-strong blocks with no (k+l)-strong blocks

inside is equal to lggl:lfor n> 2,

So the total number of k-blocks in Dw is

n+l n-11 _ | 2n-1
l—3—J+ k??J = l 3 j for n > 2

5 GIANT k~STRONG BLOCKS IN RANDOM GRAPHS

Theorem 5 For every € €(0,1), a > 1 and k > 0 there is a c(k,;a,e)> O

such that, for p Z_% » the random digraph Dn P with p 3.§-has a k-strong
!
on

block of vertex cardinality > €.n with probability at least 1 ~ e

. Let é; be the event "D has

Proof Let D = (V,E) be an instance of D
’

Assume S be true on D. Construct
1

a digraph H with the k~-strong blocks as vertices and an edge from the

no k-strong block of cardinality > &n".

« v

e Y Y

t
3
i

}
|
i
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k-strong block bl to k-strong block b2 only if there 18 no vertex cut

of size < k~1 separating bl from b2 to the direction b -~ b2. (Note that

1
at least one sv~h vertex cut, either to the direction b b or to b b exists,
1 2 2

1
and it is of cardinality < k-1.) Clearly H is acyclic and hence not
strongly connected. Let the set S be initially empty. Add to S the
k-blocks of D one-by-one, following the reverse topological order of
H. Each addjtion of a k-strong block to S, adds at most (k-1) vertices to
the border-set of S (being the set of the vertices of S having edges to
the outside of S) and at least one vertex to the rest of S (since each k-strong
block has at least k-vertices if it is no trivial) or causes the transformation
of a vertex of the bordef-set of S to a vertex of the rest of S. Thus,
at least 1l/k of the vertices of S have no edges to the outside of s.

n
Continue the above constructior,, just until S has cardinality > e'5  where

€' = miri(es l-¢). Then (by our assumption that 5' holds)
i

t'g-i s] < €5 +en
s - B(s)| £
So S - B(S > — n
! - 2% .
where B(S) is the border-set of S.

Also,

VD) - s| > n(1- e 3 € >0

Let A =8 - B(S), B=V-~S,

Then lal > e -n, Bl > € «n
- 1 - ¢

il il

i il 05 o f o i
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with € m™ S

and no edge exists from A to B.

This event's probability is bounded above by

Z Prob {no edge from A to B}
allja,B

N
*
5
=]
~~
'_I
[}
ko]
S

<

<

=

-
E-N
[¢]
N
A
|

(1]

and ¢ >

s10

for p >

and any o > 1,

so, prob () <@ an QED.

6 k-STRONG BUOCKS OF DENSE RANDOM DIGRAPHS

sk b by
e L dah

e ol iy

b vt} T it

This section considers random digraphs of the model Dn

P> C log n
- n

e bl N el g i 9 il

Theorem 6 For any constant integer k > 0 and any n and m < —-

S PRTTRES T

constants c(k), d(k) > 0 such that, the cardinality X of the biggest

k=strong block of the digraph Dn p with p > c(k) 39%—& satisfies the

’

proprety
n-m-d(k)

Prob {X = n = m})
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Proof Let D be an instance of Dn and let the event X = n-m be true in

’

that instance. Let A be a k-strong block with IAI = X. For every

U £ V-A, at least one of the following two inequalities holds
| (u,v.) € E(MD : VE |l <x -1 (*)

| tv,u,) € E(D) : vE Al <k -1 (**)

So, for at least one-half o: the vertices of V-A the same inequality
holds (either (*) or (**). This is so, since failure of both (*) and (**)
for u would imply that w€ A by theorem 2. Without loss of generality,
let (*) be the property holding for 3_%‘of the vertices uf V-A., cCall the

set of these vertices U.

so, |u) 3_%— [v-a] = %m

and Va€U [{(u,v)€ ﬁ(n) : V€ Al < k-1
Let A = {veal3u€ U: (uv) € EMD}
Then |a | < k=1) |u| < k-1) *m

Let A =A-RA. Ve get |A2i >n-m- (k-m
or |A2| >n - km,
Furthermore, there is no edge from U to Az.

Let £ be the above event. The probability of € is bounded above by the

]
§
e
|

bt v,
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: n n-m -
uln,m = ) (1 - p) ™" km) (m/2) (#4%)
m n - km

: n-m n
(Note the way this upper bound is formed. We use n -km iv( ) since ()

]
]
]

n - km X

is decreasing for x > 2- and n - km is the minimum value possible > % )

i
E -

We have to use the minimum exponent of (l-p).

But ].-p_<_1-c-1-9:17‘—n s:l.ncep_g_c-l-‘l%—rl

(Sl e M1

n-m
Aiso ( ) < e(k-l)m log (n-m) since (k=-1)m < n ; n .
n - kn ;

b il

n
Also () < em log n since m < %
m

i 1401 i il sl i

: Finally l-¢ _1_0_3_2 € e ° Q%_n_ vn

So, u(n,m) < Bd(n,m)

T VRN

T
ottt s s X

where d(n,m) =

(l - &“—\)m -m - (k_l)m _]_.-oi_(!l::n_'\—)_
n log n
m (1 - -]%n—)«m- (k~1)m

P g-m- km (by our assumption)

Q. N0

3

> md (k) where d(k) = ¢ - k

Note that a(k) > 0 iff c(k) > 4k

So |
Prob (&) < n_m'd(k) QED.

Theorem 7 For any constant interger k > ¢ and any n >> k there is a

constant c(k) > 0 and a d(k) > 0 such that the cardinality X of the biggest .

. 1 . :
k-strong block of the digraph D D with p > c(k) —Cr-:’_ﬁ satisfies the e

property

__.._.__._.__
et 0 4 ilastic Sonad . .

:
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Prob {X < n - log n} < 2p{t=2og n dlk)). 4
Proof We have (by using theorem 6) ox 3
n=- E
that Prob {log n<n-Xg¢« ;—k} =§ : -n'm'd(k)
\ m=log n
with d(k) = E{FL -k > 0 for c(k) > 4k :
So é
n

Prob {1og n<n-X«

Also, from theorem 5, and by using

1
€ =iﬁ' we get

- i
Prob {P X > 2k’ < @

for any a>1 and c(k) >

€ €
1

(or c(k) > 1l6k3)

%

6 + log_ 4
€ £ = 1 - - —3— 3
1 2 &7 dk ;

> max (fk' e_i_les_sé)

«15=

E
e
3

} <n . n-log n - d(k)

< n1 - log n * A(k)

[F—

€ €
12

[ L TR
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we get .
prob {log n < n = X} < e~On , ql - logn a (k)
or
prob (X <n - logn} <2n ~ log n - d(k)
for sufficiently large n.
QED.
NOTE

Theorem 7 says that, for p > c(k) lg%—%he digraph Dn p has a
’

k-strong block with prob+l as n3e.

Theorem 8 For any constant integer k > o and n >> k there are constan's
log n
’ n

clk) >0, d'(k) >1 such that the random digraph Dn p with p z_cfk)

is k-strongly connected with probability

y1 -2

Proof Let R=n - X, X = cardinality of the biggest k-strong block of
(“" u€+ iog 4)
1 2

D p’ By using theorems 5,6 and c(k) > 2 + max

withe e = 1 - £1~
2 4k2 k

we get that

c
prob {1 < R} < e 4 n1 - (E'_ k)

BRI ST I o XEor...” ¥ 0l P

o Ry

B Ty LR T T T .
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Let 4'(k) = (L~ (c/4-k))(~1). Then d'(k) >1 for

a+loge4
c(k) > 2 + max{dk, ————

8182

and

prob{1 <R} € & 4 78" (k)

- | ]
< 253" (K) for large n.

Hence

prob{rR=0}>1- 2% ¥ . QED

7. k-STRONG BLOCKS FOR INTERMEDIATE EDGE DENSITIES

Let ¢/n<p<c'(log n/n). We wish to study the k-strong connectivity

of this class of randum digraphs.

Theocem 9. For any constant k#0 and any m=o(n) there is a constant

cl(k) >0 and a function t(n) >c1(k)log n/m such that if p2t(n)/n
then if X i the cardinality of the biggest k~strong block of D

’

; 0 - < _.._P_._._-» » -+ 0
Prob{i<€n-m} < £ WD 0 as n

Proof. Assume that in the instance D of Dn, the cardinality X of
the biggest k-strong block satisfies the inequality X€n-m. Then we can
find two sets A,B (as in Prcof of Theorem 6) such that IAI =1/2 m,

|B| =n-km and no edge from A to B (or from B to A). This event

is above bounded by the probability 1-gq, where

v, ol it

PRSP T VORI By PRI

JPPTTI PR FRPTFI R TP W . R




q=Prob{for every pair of disjoint sets A,B of vertices of the
above sizes, there is at least one edge from A to B}. We shall show
that gq+1 as n-=+®, Let us enumerate all possible pairs of sets of

vertices of the above sizes. Call them

(Al' Bl) 8 (AZ'BZ)"”'(Ag’ Bg)

We have by Baye'é formula that

where

q = Prob{E(Al.Bl) ¥OA ... AE(Ag, Bg) # g}

where E(A,B) = set of edges from A to B.

So

bl b tl eude. L ot AL .anh.m.,\x_.ﬂ

(E,B,)70 ( B,
q = Prob E(Al,Bl)fﬁ Prob (m N Problg_l
N E(A,,B,)#8
i1
1
We need the following enumeration lemma: -
t !
Lemma S5, For every two sets Ai, Bi having at least one edge e from

Ai to Bi' there are at least
n—Z\) n-2—(m—1))

g = !

! L m=-1 (k=l)m -1 ‘

2 i

pairs of scts of sizes 1/2 m, n-km which also contain this edge.
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This lemma can be proved easily by taking cut the two vertices of e and

enumerating.

Corollary. There is a suitable enumeration of the sets in the g product

such that for every term i not equal to 1 the next (at least) 9, terms

(conditioned on the existence of an edge from Ai to Bi) will be equal

to 1.

Hence the value of q is

g/9 ]
; q » [Prob{at least an edge from A, to Bl}] ! j
4 i
But
n k . i
L g (E) as n-+® |
9, , ‘
(In fact A i
: f— - (%) as n+® ) :
: 1
Hence, " .
_]2; me (n‘kﬂl) (n/m) :'
q @ Ll - (1-p) i
o : :
_ $
Lp. B F mn-im (n/m) A |
. q? |1-[{1-p)7' "] b
or _ n k g
-p % (n-km) |\ m :
q? Ll -e




1 -20~
or
__[_____t(rzx)m - k log n] -2
g l-e >1l-n if cl(k)>2k+4.
(Since 1/2 t(n)m>1/2 cl(k) log n> (k+2)log n only if cl(k) > 2% +4,)
so,
[H522 109
Prob{X<n-m}<e +0 as n+® 3
E for the above values of cl(k) . QED
] Corollary. Fox each k>0, the digraph Dn with p# cl(k)/n has a i
i 'P - e (K)1/2k] !
3 k-strong block of cardinality > n-log n, with probability >1-n . E
:
3 Proof. Just set m=log n and t(n) >cl(k) in the previous theorem.
|
L
!
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APPENDIX

SEMMA 1. The minimum number of vertices separating vertex s from

vertex t in the direction s to t, is the maximum number of vertex

disjoint s to t paths.

Proof. (A variation of Dirac's Proof for a version of Menger's
Theoren.)

It is clear that if k points separate s from t then there can
be no more than k disjoint paths from s to t.

It remains to show that if it takes k points to separate s and
t (in the direction s+ t) in the digraph D, then there are k disjoint
st paths in D. This is clearly true for k=1. Assume it is not true
for some k>1l. Let h be the smallest such k and let F be a digraph
with the minimum number of vertices for which the theorem fails for h.
We remove edges from F until we obtain a digraph D' such that h
vertices are required to separate s,t (in the direction st) in D',
but for any edge x 1in D‘,Aonly h-1 vertices are required to separate
s,t in D'-x. Let us investigate properties of this D'.

By definition of D', for every x edge of D', there is a set S(x)
of h-1 vertices separating s,t (in the s.'.t direction) in D' - x.
Now, D'-S(x) contains at least one st path, since it takes h
vertices to separate s,t in D'. Each such st path must contain the
edge x= (u,v) since it is not a path in D'-x. So, u,vg€s(x) and
if u#¥s, u#t then S(x)Y{u} separates s from t (in the st

direction) in D°'.
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If there is a vertex w such that (s,w),{w,t) are edges in D',

then D'-w requires h-1 vertices to separate s,t and so it has h-1

disjoint st paths. Replacing w, we get h disjoint st paths in D'.

So, we showed

(1) No such w exists in D',
F:
- Let W be any collection of h vertices separating s from t (in st
g direction) in D'. An sW path is a path starting at s and ending in

some winV and containing no other vertex of W. Call the collection of

VTR AT

all sW paths and Wt paths Ps and Pt' respectively. Then each st

path begins with a member of Ps and ends with a member of Pt’ because

every such path contains a vertex of W. Moreover, the paths in Ps and

Pt have the vertices of W and no others in common, since it is clear

L ds 2 is0n

T that each Wi is in at least one path in each collection and, if some
other vertex were in both an sW and an Wt path then therc would be an

; st path containing no vertex of W. Finally, either Ps-w=¥{s} or

Pt-w=={t} since, if not, then both P_ plus the edges {(wl,t),(wz,t),...}
and P, plus the edges {(s,wl),(s,wz),...} are digraphs with fewer i
vertice« <han D' in which s,t are nonadjacent and h-connected and :
there’sre in cach there are h disjoint st paths. Combining the sW :

and Wt portions of these paths, we can construct h disjoint st paths

in D', and thus have a contradiction. So E

(iI) Any collection W of h vertices separating s from t (to L
the st direction) has the property : Vu€Ww: : ;
(s,u) 1is an edge

or (u,t) is an edge.
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Now we complete the proof.

Let P={(s,ul),(ul,uz),...,(e.-,t)} be a shortest st path in D'

and let ulu2=x. By (I), u274t. ;

Form S(x) = {ul'uZ""'uh—l} as above, separafing s from t in

D'-x. By (I), (ul,t) €D', so by (II)

with W=S(x) U {ul} we get (s,ui) €D', Vi. i
Thus, by (I), (ui,t) €D', Vi. However, if we pick W=S(x) U {uz} .
instead, we have by (II) that (s,uz) €D', contradicting our choice of P
as a shortest st path. QED
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